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Abstract. We present a superfield Lax formalism of the superspace sigma model based on the target space
G/H and show that a one-parameter family of flat superfield connections exists if the target space G/H is
a symmetric space. The formalism has been related to the existence of an infinite family of local and non-
local superfield conserved quantities. A few examples have been given to illustrate the results.

1 Introduction

In recent years, some investigations have been made to
study the infinite number of conserved quantities of sym-
metric space sigma models, their Poisson bracket algebra
and the quantum conservation of these quantities [1–3].
The supersymmetric extension of sigma models based on
symmetric spaces G/H have also been studied quite re-
cently, and it has been shown that there exist two classes of
local conservation laws; one class of conservation laws cor-
responds to cohomology of the target manifold and the sec-
ond class corresponds to higher-spin generalizations of the
energy momentum tensor [4]. The investigation of these in-
tegrable models has applications in recent advances in su-
perstring theories on AdS backgrounds [5–13]. The model
studies in these investigations are in many ways related
to the symmetric space sigma model. In all these studies,
a formal analysis of the integrability of supersymmetric
sigma models on a symmetric space has not been carried
out so far, which is what we intend to present in this work.
In this paper we will extend certain results related

to the integrability of the supersymmetric sigma models
based on G/H. We generalize earlier results of Eichen-
herr and Forger [14] and show that the supersymmetric
sigma model with target space a homogeneous space G/H
admits a one-parameter family of flat superfield currents
if G/H is a symmetric space. Our main result is to find
a superfield Lax formalism in terms of a one-parameter
family of flat superfield currents of the supersymmetric
sigma model on a symmetric space and relate it to the
infinitely many local and non-local superfield conserved
quantities of the model. We illustrate our results by giv-
ing some explicit examples of sigma models on complex
Grassmannians U(m+n)/U(m)×U(n) and principal chi-
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ral models for which the corresponding symmetric spaces
are G×G/G.
This paper is organized as follows. In Sect. 2, we give

a general theory of the G/H sigma model in superspace.
Section 3 contains the Lax formalism of the model in terms
of a one-parameter family of flat superfield connections,
and it has been shown that a Lax formalism is admissible
when G/H is a symmetric space. In Sect. 4, we investigate
the existence of local and non-local conserved quantities
of the model and compare our results with the results ob-
tained earlier. Section 5 gives an explanation of our investi-
gations with some explicit examples. Section 6 contains our
concluding remarks.

2 The G/H sigma model in superspace

We begin by defining a compact symmetric space and
formulate the supersymmetric non-linear sigma model on
a symmetric space G/H. For the general structure of the
model, we follow the treatment of the model adopted
for the bosonic model [14–17] and the supersymmetric
model [4].
A symmetric space is defined as follows. Let G be a com-

pact Lie group with Lie algebra g and letH be its subgroup
with a Lie algebra h. Let σ be a linear automorphism σ:
g→ g such that σ2 = 1. This means that σ has eigenvalues
±1 and it splits the algebra g into orthogonal eigenspaces
corresponding to these eigenvalues. This automorphism is
called an involutive automorphism. This causes the canon-
ical decomposition of g as follows:

g= h+k , (1)

where h and k are the (+1) and (−1) eigenspaces of σ (Z2
grading of g) and the action of σ on the vectors of g,h and
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k is as follows:

[σ(X), σ(Y )] = σ [X,Y ] forX,Y ∈ g ,

σ(X) = X forX ∈ h ,

σ(X) = −X forX ∈ k .

It is clear from the above that h is a subalgebra but k is
not. In fact, k is the orthogonal complement of h in g. The
following Lie brackets hold:

[h,h]⊂ h, [k,k]⊂ k, [h,k]⊂ k. (2)

The algebra h satisfying the relation (2) is called a sym-
metric space subalgebra. The coset homogeneous space
G/H with involutive automorphism σ and admitting
a canonical decomposition (1) obeying (2) is called a sym-
metric space [18, 19].
In order to formulate a supersymmetric sigma model

on G/H in (1+1)-dimensions1, we define the superfield
Q(x±, θ±) as a function of space-time coordinates x± and
anti-commuting coordinates θ± and taking values in G/H
and it is lifted (locally) to the superfield G(x±, θ±) taking
values in G, with a natural equivalence

G2(x
±, θ±)∼G1(x

±, θ±),

such that there exists a superfield H(x±, θ±) ∈ H, such
that both are related by a gauge transformation

G2(x
±, θ±) =G1(x

±, θ±)H(x±, θ±) . (3)

For the gauge invariant quantities such as the super-
field Q(x±, θ±) ordinary derivatives are relevant, while on
gauge-covariant quantities such as the superfieldG(x±, θ±),
the ordinary derivatives have to be replaced by covariant
derivatives. We define the gauge-covariant derivative in su-
perspace acting on the superfieldG(x±, θ±) by

D±G=D±G− iGA± , (4)

where iGA± ≡ π(D±G) is the vertical part of D±G, and
D±G ≡ (1−π)(D±G) is the horizontal part of D±G2 [4].
The gauge invariant conserved superfield currents are

J± ≡ iαD±GG
−1 = iα(1−π)D±GG

−1 , (5)

and the gauge-covariant conserved superfield currents

K± ≡−iαG
−1D±G=−iα(1−π)G

−1D±G , (6)

1 Our notation conventions are as follows. The
two dimensional Minkowski metric is ηµν = diag(+1,−1) and
the orthonormal and light-cone coordinates are related by
x± = 12 (x0±x1) and ∂± =

1
2 (∂0±∂1). Under a Lorentz trans-

formation x± and ∂± transform as x
± �−→ e∓Λx± and ∂± �−→

e∓Λ∂±, where Λ is the rapidity of the Lorentz boost.
2 The super derivatives D± are defined as D± =

∂
∂θ±
−

iθ±∂±, D
2
± = −i∂±, {D+,D−} = 0, where {,} is an

anti-commutator. The supersymmetry generators are Q± =
∂θ±+i∂±, obeying Q

2
± = i∂±.

where α is some real constant introduced for later con-
venience. Under the gauge transformation the super-
field G(x±, θ±) transforms as G(x±, θ±)→ G(x±, θ±)
H(x±, θ±) and the corresponding gauge invariant and co-
variant superfield currents transform as

J±→ J±, K±→H
−1K±H.

We define the action of the covariant derivative in super-
space on the gauge-covariant superfield currentsK± by

D±K∓ =D±K∓+i {A± ,K∓} .

The Lagrangian for the G/H sigma model in superspace
is [4]

LG/H ≡
1

2
Tr
(
D+G

−1D−G
)
=
1

2
Tr
(
D+Q

−1D−Q
)
. (7)

The superspace equations of motion obtained from the La-
grangian can be expressed as

D−J+−D+J− = 0, (8)

D−K+−D+K− = 0. (9)

For the gauge superfields A±, we can have the following
equation for the given homogeneous space G/H:

D−A++D+A− = iπ

×
{
G−1D+G+iA+, G

−1D−G+iA−
}
;
(10)

the curvature form in terms of the superfieldsA± is

F−+ ≡D−A++D+A−+i {A+,A−}

= iπ
{
G−1D+G,G

−1D−G
}
. (11)

In the above expressionF−+ represents the curvature form
of the gauge superfields A±. Our aim in this paper is to
develop a superfield Lax formalism of the model in terms
of a one-parameter family of flat superfield connections. In
the sections which follow, we show that the existence of flat
superfield connections is admissible when the target space
G/H of the model is a symmetric space. The superfield Lax
formalism is then used to derive infinitely many local and
non-local superfield conserved quantities.

3 Superfield Lax formalism

The superfield Lax formalism of the symmetric space
sigma model in superspace can be obtained by defining
a one-parameter family of transformations on superfields
of the model. A one-parameter family of transformations
on the superfiels is defined in terms of the matrix super-
fields U (γ) which obey the following set of linear differential
equations:

D+U
(γ) ≡ i(1−γ−1)U (γ) J+ =−α(1−γ

−1)U (γ)D+GG
−1,

D−U
(γ) ≡ i(1−γ)U (γ) J− =−α(1−γ)U

(γ)D−GG
−1,
(12)
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where the matrix superfield U ∈ G. The model retains the
zero-curvature representation if the compatibility condi-
tion of the linear system (12) becomes equivalent to the
following equation:

(1−γ−1)D−J++(1−γ)D+ J−

+i(1−γ−1)(1−γ) {J+, J−}= 0.
(13)

Using (8) the compatibility condition (13) reduces to the γ-
independent equation

D−J++D+ J−+2i {J+, J−}= 0, (14)

which is the zero-curvature condition for the superfield
currents J±. If we look at the compatibility condition
of the linear system (12), we arrive at the following γ-
independent equation:

D−J++D+ J−+2i {J+, J−}=−iα(2α−1−π)

×G
{
G−1D+G,G

−1D−G
}
G−1,

(15)

which does not indicate that the superfield current J± is
flat. In order to formulate a theory which gives rise to flat
superfield currents, we look at the extra terms appearing
on the right-hand side of (15) and look at the constraints
which appear in the geometric structure of the target space
when these extra terms are set equal to zero. To achieve
this we discuss two different cases.
In the first case we assume that [k,k]⊂h, which implies

that

(1−π)
{
G−1D+G,G

−1D−G
}
= 0,

and (15) reduces to (14) if we choose α = 1. The matrix
superfield U (γ) generates a one-parameter family of trans-
formations on the solutions of the equations of motion. The
superfield G(x±, θ±) transforms as

G(x±, θ±)→G(γ)(x±, θ±) = U (γ)G(x±, θ±), (16)

where G(1)(x±, θ±) =G(x±, θ±). The action of the deriva-
tives D± on the superfieldG

(γ)(x±, θ±) will be

D±G
(γ) = γ∓1U (γ)D±G+iG

(γ)A±,

where U (γ)D±G is the horizontal part and iG(γ)A± is the
vertical part ofD±G. This implies

D(γ)± G
(γ) = γ∓1U (γ)D±G, A

(γ)
± =A±, (17)

where D(γ)± G
(γ) = D±G

(γ)− iG(γ)A(γ)± . Thus it can be
seen that the Lagrangian (7) is invariant under the trans-
formation (16).
The second case is when [k,k] ⊂ k, which is equivalent

to saying that

π
{
G−1D+G,G

−1D−G
}
= 0.

Equation (15) reduces to (14), if we choose α= 12 . For this
case, consider the following one-parameter family of differ-
ential equations:

D+V
(γ) ≡ i(1−γ−1)V(γ)K+ =

1

2
(1−γ−1)V(γ)G−1D+G,

D−V
(γ) ≡ i(1−γ)V(γ)K− =

1

2
(1−γ)V(γ)G−1D−G, (18)

where K±(x
±, θ±) are the components of the gauge-

covariant superfields. The G-valued matrix superfield V(γ)

transforms under the gauge transformation as

V(γ)→V(γ)H(x±, θ±).

By using this gauge transformation, the system (18) can
also be expressed as

D+V
(γ) ≡ i(1−γ−1)V(γ)K++iV

(γ)A+

=
1

2
(1−γ−1)V(γ)G−1D+G+iV

(γ)A+,

D−V
(γ) ≡ i(1−γ)V(γ)K−+ iV

(γ)A−

=
1

2
(1−γ)V(γ)G−1D−G+iV

(γ)A−. (19)

The compatibility condition of the linear system (19) is

D−
((
1−γ−1

)
K++A+

)
+D+ ((1−γ)K−+A−)

+ i
{
(1−γ−1)K++A+, (1−γ)K−+A−

}

= (1−γ−1)D−K++(1−γ)D+K−

+i(1−γ−1)(1−γ) {K+,K−}+F−+. (20)

For this case, (11) implies that the curvature form F−+
vanishes so that the compatibility condition (20) reduces
to the following γ-independent equation:

D−K++D+K−+2i {K+,K−} ≡ −
1

2
F−+ = 0.

The matrix superfields U (γ) and V(γ) generate a one-
parameter family of transformations on the solutions of the
superfield equations which gives rise to a one-parameter
family of flat superfield currents. This particular trans-
formation is given by

G(x±, θ±)→G(γ)(x±, θ±) = U (γ)G(x±, θ±)V(γ)−1V(1).
(21)

The action of derivatives D± and D± on the superfields
G(γ)(x±, θ±) is

D±G
(γ) = γ∓1U (γ)D±GV

(γ)−1V(1)+iG(γ)A±,

D
(γ)
± G

(γ) = γ∓1U (γ)D±GV
(γ)−1V(1), A± =A

(γ)
± ,

where D(γ)± G
(γ) = D±G

(γ)− iG(γ)A(γ)± . The Lagrangian
(7) is invariant under transformation (21).
In the first case, where we have [k,k] ⊂ h, the linear

map σ : g→ g is an isometric Lie algebra automorphism
and can be lifted to an isometric Lie group automorphism,
which is always true if G is simply connected. The coset
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space G/H is then a symmetric space [18, 19]. In the sec-
ond case, where we have [k,k]⊂ k, the coset space G/H is
canonically isomorphic to the connected normal Lie sub-
group K in the Lie group G generated by k in g, and the
action of H on K by the Lie algebra automorphism σ can
be lifted to an action ofH on K by the Lie group automor-
phismwhich is always the case ifK is simply connected. For
the special case when K is canonically isomorphic to the
symmetric space

K×K/∆K,

we get the principal chiral model discussed in Sect. 5. In
summary: we have observed that for the first case we have
to take G to be simply connected and for the second case
K must be compact. This shows that the supersymmetric
sigma model based on G/H admits a Lax formalism and
the zero-curvature representation presented in (12) and
(15) respectively if G/H is a symmetric space. This is es-
sentially a supersymmetric generalization of earlier work
of Eichenerr and Forger [14]. In what follows, we explic-
itly write the Lax pair of the model and derive an infinite
family of superfield conserved quantities.
In both cases, a one-parameter family of flat superfield

currents is given by the following transformation rule:

J+ �→ J
(γ)
+ = γ−1U (γ)J+U

(γ)−1 ,

J− �→ J
(γ)
− = γ U (γ)J−U

(γ)−1 .

These superfield currents are conserved in superspace for
any value of γ: D+J

(γ)
− −D−J

(γ)
+ = 0. The associated lin-

ear system of the supersymmetric sigmamodel on the sym-
metric space can be written as

D±U(t, x, θ;λ) = U(t, x, θ;λ)P
(λ)
± , (22)

where the odd superfields P(λ)± are given by

P(λ)± =∓
2iλ

(1∓λ)
J±.

The parameter λ is the spectral parameter and is related
to the parameter γ by λ= 1−γ

1+γ . The compatibility condi-
tion of the linear system (22) reduces to a fermionic zero-

curvature condition for the odd superfields P(λ)± as follows:

{
D+−P

(λ)
+ , D−−P

(λ)
−

}
≡D−P

(λ)
+ +D+P

(λ)
−

+
{
P(λ)+ ,P

(λ)
−

}
= 0.

Now we can define the superspace Grassmann odd opera-
tors L

(λ)
±

L(λ)± =D±−P
(λ)
± ,

obeying the (Lax) equations in superspace

D∓L
(λ)
± =

{
P
(λ)
∓ ,L

(λ)
±

}
.

By applying D± on (22), one gets a linear system in terms

of even superfields P̃(λ)±

∂± U(t, x, θ;λ) = U(t, x, θ;λ)P̃
(λ)
± , (23)

where the even superfields P̃(λ)± are given by

P̃(λ)± =

{

±

(
2λ

1∓λ

)
D±J±− i

(
2λ

1∓λ

)2
J2±

}

.

The compatibility condition of the linear system (23) now
reduces to a bosonic zero-curvature condition for the even
superfields P̃(λ)± :

[
∂+−P̃

(λ)
+ , ∂−−P̃

(λ)
−

]
≡ ∂− P̃

(λ)
+ −∂+ P̃

(λ)
−

+
[
P̃(λ)+ , P̃

(λ)
−

]
= 0.

The superspace Grassmann even Lax operators L̃(λ)± ,

L̃(λ)± = ∂±−P̃
(λ)
± ,

obey the following equation:

∂∓L̃
(λ)
± =

[
P̃(λ)∓ , L̃

(λ)
±

]
.

The linear system (23) can be re-expressed in terms of
space-time coordinates by

∂0 U(t, x, θ;λ) = U(t, x, θ;λ)P̃
(λ)
0 ,

∂1 U(t, x, θ;λ) = U(t, x, θ;λ)P̃
(λ)
1 , (24)

with the superfields P̃(λ)0 and P̃(λ)1 defined by

P̃(λ)0 =
1

2

{(
2λ

1−λ

)
D+J+− i

(
2λ

1−λ

)2
J2+

−

(
2λ

1+λ

)
D−J−− i

(
2λ

1+λ

)2
J2−

}

,

P̃(λ)1 =
1

2

{(
2λ

1−λ

)
D+J+− i

(
2λ

1−λ

)2
J2+

+

(
2λ

1+λ

)
D−J−+i

(
2λ

1+λ

)2
J2−

}

.

This is the bosonic superfield Lax pair of the model. The
compatibility condition of the linear system (24) therefore
becomes

[
∂0−P̃

(λ)
0 , ∂1−P̃

(λ)
1

]
≡ ∂1 P̃

(λ)
0 −∂0 P̃

(λ)
1

+
[
P̃(λ)0 , P̃

(λ)
1

]
= 0.

We now define the theory on the spatial interval [−a, a] and
the superfields P̃(λ)0 and P̃(λ)1 are subjected to the bound-

ary conditions P̃
(λ)
0 (a) = P̃

(λ)
0 (−a), P̃

(λ)
1 (a) = P̃

(λ)
1 (−a).
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The equation satisfied by the superfield monodromy oper-
ator Tλ(x, θ) is

∂

∂x
Tλ(x, θ) = P̃

(λ)
1 Tλ(x, θ), (25)

with the boundary condition Tλ(−a) = 1. The solution of
(25) is

Tλ(x, θ) = P exp

(
−

∫ x

−a
dyP̃(λ)1 (y, θ)

)
,

where P is the path-ordered operator. The operator
Tλ(x, θ) obeys

∂

∂t
Tλ(x, θ) =

[
P̃(λ)0 , Tλ(a)

]
,

which is equivalent to the Lax formalism. This can be used
to generate an infinite sequence of local and non-local con-
servation laws as detailed in the next sections.

4 Superfield conserved quantities

4.1 Local conserved quantities

We now derive the continuity equations of the superfield
local conserved quantities of the model via a set of super-
field Riccati equations using the method adopted for the
bosonic models (see for example [15, 16]). The equation of
motion (9) can be written as

D−K+−D+K− ≡D−K++i {A−,K+}

−D+K−− i {A+,K−}= 0, (26)

where

K± ≡J±−A± =−iG
−1D±G−A±.

Equation (26) immediately gives

2D−K++2i {A−,K+}=−i {K+,K−}−F−+. (27)

Since G/H is a symmetric space, therefore by using (2) the
left- and right-hand sides of (27)must vanish separately, i.e.

D−K+ =−i {A−,K+} ink ,F−+ =−i {K+,K−} inh.
(28)

These considerations lead to essentially two classes of local
conserved quantities; one class consists of currents based
on generators of the de Rham cohomology ring of G/H, and
the second class consists of currents that are higher-spin
generalizations of the super energy momentum tensor [4].
An infinite series of local conservation laws can also be

obtained by using a set of compatible Riccati equations.
A set of compatible Riccati equations for the symmetric
space sigma model in superspace is given by

D+N (γ) =−iγ
−1K+− iγ

−1N (γ)K+N (γ)

+ i [N (γ),A+] ,

D−N (γ) = iγK−+iγN (γ)K−N (γ)+ i [N (γ),A−] ,
(29)

whereN ∈ G/H is an even matrix superfield. The following
conservation equation immediately follows:

γ−1D−Tr (N (γ)K+)−γD+Tr (N (γ)K−) = 0. (30)

An infinite sequence of local conservation laws can be ob-
tained by expanding N (γ) as a power series in γ :N (γ) =∑∞
k=0 γ

kNk. On substituting this expansion in (30), one
arrives at the algebraic equations obtained successively.
The coefficients can be determined by these algebraic equa-
tions and substitution of these coefficients yields explicit
expressions of the conserved quantities. The details of this
depend on the particular model.
The existence of local conserved quantities in super-

symmetric models on symmetric spaces can have certain
relations with the integrable structures in superstring the-
ory on AdS5×S5 where the theory has been regarded as
a non-linear sigmamodel with the field taking values in the
supercoset space

PSU(2, 2|4)

SO(4, 1)×SO(5)
. (31)

The even part of this space is

SO(4, 2)

SO(4, 1)
×
SO(6)

SO(5)
= AdS5×S

5,

which is a symmetric space and therefore admits a Lax
formalism (one-parameter family of flat connections) and
can further be related to the conserved quantities on the
Yang–Mills sector of the AdS/CFT correspondence [5–
12]. It is also worthwhile to study how this coincides
with the local conserved quantities for the models based
on supercoset spaces. In [13] it has been shown that the
classical superstring theory on AdS5×S5 as a super-
coset sigma model admits a Lax formalism which does
not imply the existence of local conserved quantities. In
the light of our results, we expect that the existence of
local conserved quantities might appear from the Lax
formalism of the model on the even part of the super-
coset space which defines a symmetric space. In all these
investigations of integrable structures of classical super-
string theory, a target space supersymmetry has been
used while the supersymmetric models we have studied in-
volve world-sheet supersymmetry. At this stage we have
not been able to relate the integrable structures of these
supersymmetric theories. The formalism we have de-
veloped can be extended to the model with target space
supersymmetry.

4.2 Non-local conserved quantities

The non-local conserved quantities have been constructed
for both the bosonic as well as the supersymmetric sigma
model, via a family of flat currents [20–36]. For our model,
we assume spatial boundary conditions such that the su-
perfields J± vanish as x→±∞. Equation (24), then im-
plies that U(t,±∞, θ;λ) are independent of time. The re-
sidual freedom in the solution for U (γ) allows us to fix



802 U. Saleem, M. Hassan: Superfield Lax formalism of supersymmetric sigma model on symmetric spaces

U(t,−∞, θ;λ) equal to a unit matrix. We are then left
with a time independent function, Q(λ) = U(t,∞;λ). Ex-
panding Q(λ) as a power series in λ gives infinitely many
conserved quantities

Q(λ) =
∞∑

k=0

λkQ(k) ,
dQ(k)

dt
= 0.

In order to derive explicit expressions for these conserved
quantities in terms of superfields, we write (24) as

U(t, x, θ;λ) = 1 +
1

2

∫ x

−∞
dy U(t, y, θ;λ)

×

{(
2λ

1−λ

)
D+J++

(
2λ

1+λ

)
D−J−

−i

(
2λ

1−λ

)2
J2++i

(
2λ

1+λ

)2
J2−

}

.

(32)

We expand the superfieldU(t, x, θ;λ) as a power series in λ,

U(t, x, θ;λ) =
∞∑

k=0

λkUk(t, x, θ), (33)

and compare the coefficients of powers of λ, one gets a se-
ries of conserved non-local superfield currents, which upon
integration give non-local conserved quantities. The ex-
pressions for the first few cases are

Q(1)a =

∫ ∞

−∞
dy
(
D+J

a
++D−J

a
−

)
(t, y, θ) ,

Q(2)a =

∫ ∞

−∞
dy

(
(D+J

a
+−D−J

a
− )(t, y, θ)

−if abc(Jb+J
c
+−J

b
−J
c
− )(t, y, θ)

+
1

2
f abc(D+J

b
++D−J

b
− )(t, y, θ)

×

∫ y

−∞
dz (D+J

c
++D−J

c
− )(t, z, θ)

)
.

These are the desired non-local conserved quantities which
correspond to the bosonic non-local conserved quantities
of [14] when the fermions are set to zero. The component
content of these superfield conserved quantities is the same
as appeared for certain models in [27–33]. The non-local
conserved quantities are also known to exist in the classical
theory of Green–Schwarz superstrings, where a parameter
dependent flat current taking values in the Lie algebra of
PSU(2, 2|4) is shown to exist [5]. The construction of non-
local conserved quantities has been extended to the case
of the full supercoset space (31) which is not symmetric
and the theory also involves a Wess–Zumino term and κ-
symmetry [7, 8]. Moreover, it has been shown that Yangian
non-local symmetries exist inD= 4 superconformal Yang–
Mills theory in the gauge theory sector of the AdS/CFT
correspondence [9].

5 Examples

5.1 Supersymmetric model on complex Grassmannian

In the previous section, we have discussed a general pro-
cedure of studying the Lax formalism and extracting con-
served quantities for a symmetric space sigma model in
superspace. In this section we will discuss an example i.e.
the sigma model on the complex Grassmannian manifold
U(m+n)/U(m)×U(n). For n= 1, it reduces to the com-
plex projective space CPm. We define a U(m+n)-valued
matrix superfield G(x±, θ±)

G(x±, θ±) =

(
X
Y

)
,

G†(x±, θ±)G(x±, θ±) = I =G(x±, θ±)G†(x±, θ±),

where X(x±, θ±) and Y (x±, θ±) are superfield matrices of
order m× (m+n) and n× (m+n) respectively. We intro-
duce orthogonal projectors for superfields:

P =XX†, P̄ = Y Y †, P + P̄ = I,

which map Cm+n into m and n dimensional subspaces
spanned by the column vectors of X and Y respectively.
The super gauge transformation acts on the superfield
G(x±, θ±) as

G(x±, θ±) =

(
X
Y

)
→G′(x±, θ±) =

(
H1 0
0 H2

)(
X
Y

)
,

where
(
H1 0
0 H2

)
∈ U(m)×U(n).

The canonical decomposition of the superfieldD±GG
−1 is

given by

A± =

(
iD±XX

† 0
0 iD±Y Y

†

)
,

K± =

(
0 iD±XY

†

iD±YX
† 0

)
. (34)

The even superfield matrix N appearing in (29)–(30), de-
composes as

N =

(
0 −M†

M 0

)
, (35)

whereM is an n×m even matrix superfield. The action of
the covariant derivative in the superspace on the superfield
G(x±, θ±) will be

D±

(
X
Y

)
≡

(
D±X
D±Y

)
=

(
iP̄D±X
iPD±Y

)
.

As a result of the decompositions, the action for the com-
plex Grassmannian model splits into two parts given by

L≡
1

2

∫
d2xd2θTr(D+G

−1D−G)

=
1

2

∫
d2xd2θ

(
Tr
(
D+X(D−X)

†
)

+Tr
(
D+Y (D−Y )

†
))
.
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The variation of the action yields the following equations of
motion for each of the superfields X and Y :

D+D−X−X(D+X)
†D−X = 0,

D+D−Y −Y (D+Y )
†D−Y = 0. (36)

We rewrite the above equations of motion in terms of pro-
jector superfields:

[D+D−P, P ] = 0 =
[
D+D−P̄ , P̄

]
.

The one-parameter family of transformations acts on the
superfields X and Y as

(
X
Y

)
→U (γ)

(
X
Y

)
,

and the corresponding linear system can be expressed as

D+U
(γ) ≡−i(1−γ−1)U (γ)D+

(
X
Y

)(
X
Y

)†
,

D−U
(γ) ≡−i(1−γ)U (γ)D−

(
X
Y

)(
X
Y

)†
,

where

−D±

(
X
Y

)(
X
Y

)†
= [D±P, P ] =

[
D±P̄ , P̄

]
.

The projector superfields P and P̄ transform according to
the law

P →U (γ)PU (γ)†, P̄ →U (γ)P̄U (γ)†.

One can apply the same procedure to the real Grassman-
nian manifold. These considerations are sufficient for the
construction of the conserved quantities of the model. The
manifold is a symmetric space when we define an involutive
automorphism σ acting on the superfieldG as

σ(G) =ΘGΘ−1,

where

G(x±, θ±) ∈ U(m+n) , Θ =

(
Im 0
0 −In

)
.

Using (34) and (35), (29) and (30) generate an infinite se-
ries of local conservation laws in terms of the superfields
B± = iD±XX

†, C± = iD±Y Y
† and K±. The set of com-

patible Riccati differential equations for an even matrix
superfieldM is

D+M(γ) =−iγ
−1K++iγ

−1M(γ)K†+M(γ)

− iC+M(γ)+ iM(γ)B+,

D−M(γ) = iγK−− iγM(γ)K
†
−M(γ)− iC−M(γ)

+ iM(γ)B−.

This set can immediately be used to derive an infinite se-
quence of conservation laws:

γ−1D−Tr
(
M†(γ)K++M(γ)K

†
+

)

−γD+Tr
(
M†(γ)K−+M(γ)K

†
−

)
= 0.

Expanding M(γ) as a power series in γ :M(γ) =∑∞
k=0 γ

kMk, one can generate γ-independent conserva-
tion laws.

5.2 Supersymmetric principal chiral model (SPCM)

In this section, we discuss the supersymmetric principal
chiral model (SPCM) as a symmetric space model. If we
suppose that H is a trivial subgroup of G, setting A± = 0,
K± becomes

K±→−iG
−1D±G= J±.

Equation (27) becomes

D−J+ =−
i

2
{J+,J−} . (37)

The Lie group G can now be considered as a symmetric
space: let

∆G = {(G,G) |G ∈ G } ,

be the diagonal of G×G, and define σ : G×G →G×G such
that

σ(G,G′) = (G′, G).

Then G×G/∆G is a symmetric space with involution σ.
We define a map G×G → G such that the pair (G1, G2) is
mapped to G=G1G

−1
2 . In this case the decomposition of

the corresponding Lie algebra will be

g+g= h+k.

Bywriting the superfieldG= (G1, G2) taking values in G×
G, the gauge superfield can be expressed as

A± =

((
−
i

2
G−11 D±G1−

i

2
G−12 D±G2

)
,

(
−
i

2
G−11 D±G1−

i

2
G−12 D±G2

))
.

The one-parameter family of transformations on these
fields is given by

(G1, G2)→ (G
(γ)
1 , G

(γ)
2 ) = (U

(γ)
1 G1,U

(γ)
2 G2)

= (U (γ)1 ,U
(γ)
2 )(G1, G2),

where U1(γ) and U2(γ) belong to G. The transformation of
the superfieldG(x±, θ±) is therefore

G(x±, θ±) �→G(γ)(x±, θ±) = U1
(γ)G(x±, θ±)U2

(γ)−1 .
(38)
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Here we choose the boundary values U (1)1 = 1, U
(1)
2 = 1 or

G(1) =G. The set of linear differential equations satisfied
by U1(γ) and U2(γ) are

(
D+U

(γ)
1 , D+U

(γ)
2

)
=−(1−γ−1)

(
U (γ)1 ,U

(γ)
2

)

×D+(G1, G2)(G1, G2)
−1,

(
D−U

(γ)
1 , D−U

(γ)
2

)
=−(1−γ)

(
U (γ)1 ,U

(γ)
2

)

×D−(G1, G2)(G1, G2)
−1. (39)

Evaluating the covariant derivative and usingG=G1G
−1
2 ,

we arrive at
(
D+U

(γ)
1 , D+U

(γ)
2

)
= i(1−γ−1)

×
(
iU (γ)1 D+GG

−1,−iU (γ)2 G
−1D+G

)
,

(
D−U

(γ)
1 , D−U

(γ)
2

)
= i(1−γ)

×
(
iU (γ)1 D−GG

−1,−iU (γ)2 G
−1D−G

)
.

If we take U1(γ) =U (γ) and U2(γ) =V(γ), (38) and (39) re-
duce to the following equations:

G(x±, θ±) �→G(γ)(x±, θ±) = U (γ)G(x±, θ±)V(γ)−1, (40)

D+U
(γ) =

i

2
(1−γ−1)U (γ)J L+, (41)

D−U
(γ) =

i

2
(1−γ)U (γ)J L− , (42)

D+V
(γ) =

i

2
(1−γ−1)V(γ)J R+ , (43)

D−V
(γ) =

i

2
(1−γ)V(γ)J R− , (44)

where J L± = iD±GG
−1 and J R± =−iG

−1D±G. The com-
patibility conditions for these equations are obtained by
applying D− to (41) and (43) and D+ to (42) and (44), so
that one gets

U (γ)
{
(1−γ−1)D−J

L
+ +(1−γ)D+J

L
−

+i(1−
1

2
(γ+γ−1)){J L+ , J

L
− }

}
= 0,

V(γ)
{
(1−γ−1)D−J

R
+ +(1−γ)D+J

R
−

+i(1−
1

2
(γ+γ−1)){J R+ , J

R
− }

}
= 0.

We see that the supersymmetric principal chiral model
is in fact an integrable supersymmetric sigma model on
a symmetric space and can easily be extracted from
a supersymmetric sigma model on a general symmetric
space.
Let us write an arbitrary element of G×G in the form

Γ =

(
GL 0
0 GR

)

and consider the symmetric space sigmamodel that corres-
ponds to the involutive automorphism given by

Σ =

(
0 1
1 0

)
.

We can now construct the superfields

Γ̃ ≡ΣG−1Σ =

(
G−1R 0
0 G−1L

)
,

and

M ≡ Γ̃Γ =

(
G−1R GL 0
0 G−1L GR

)
.

The subgroup consists of diagonal elements for which
GR =GL, and we write G=G

−1
R GL, so that

M =

(
G 0
0 G−1

)
.

Then the superfield conserved currents of the model can be
written as

J± ≡ iM
−1D±M =

(
iG−1D±G 0
0 iGD−1± G

)
.

The construction then yields the superfield Lax formal-
ism of the supersymmetric principal chiral model (SPCM).
The Lax formalism of SPCM is responsible for the exis-
tence of an infinite sequence of local and non-local con-
served quantities [36].
The superspace equation of motion (37) implies an infi-

nite series of local conservation laws [35, 36]:

D±Tr (J∓)
m
= 0, D±Tr

(
Jm−1∓ J∓∓

)
= 0,

with J∓∓ =D∓J∓+iJ 2∓, where the values of m are pre-
cisely the exponents of the Lie algebra of G. The local
conserved quantities of SPCM also arise from the Lax for-
malism via a super Bäcklund transformation (SBT) or
equivalently from super Riccati equations [36]. One can
easily obtain an infinite sequence of non-local conserved
quantities for the SPCM. The expressions for the first two
non-local conserved quantities are

Q̃(1)a =
1

2

∫ ∞

−∞
dy (D+J

a
++D−J

a
−)(t, y, θ) ,

Q̃(2)a =

∫ ∞

−∞
dy

(
1

2
(D+J

a
+−D−J

a
− )(t, y, θ)

−
i

4
f abc(J b+J

c
+−J

b
−J

c
− )(t, y, θ)

+
1

8
f abc(D+J

b
++D−J

b
− )(t, y, θ)

×

∫ y

−∞
dz (D+J

c
++D−J

c
− )(t, z, θ)

)
.

These conserved quantities are exactly the same as ob-
tained in [36]. The component contents gives bosonic con-
served quantities which generates a Yangian with two
copies corresponding to left and right currents [33–36].
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6 Concluding remarks

We have investigated a one-parameter family of flat su-
perfield connections of the supersymmetric sigma model
based on symmetric spaces. This suggests that the model
in superspace represents an integrable system exhibiting
the Lax formalism and the existence of an infinite number
of local and non-local conserved quantities. Some explicit
examples are given to illustrate the results. The work can
be extended into a number of directions. The study that
needs a consideration immediately is the quantization of
the conserved quantities which could eventually lead to the
implications of the S-matrices of these models. It will be in-
teresting to develop a similar formalism for the superspace
sigma models based on supercoset spaces which appear in
the superstring theory on the AdS5×S5 background and
its relation to Yangian symmetry. The r-matrix formalism
of the superspace sigma models based on bosonic symmet-
ric spaces and supercoset spaces is also a direction which
needs to be investigated. Moreover many of the integra-
bility structures which have appeared in the AdS/CFT
correspondence can be further extended to incorporate cer-
tain mathematical techniques of integrable field theories
such as involution of local conserved quantities, their quan-
tization, S-matrix and r-matrix formalism, algebraic and
thermodynamics Bethe Ansatz etc.
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